bài 70 trang 40 SGK Toán 9 tập 1
Sau những năm 70 Tính giá trị của các biểu thức sau bằng cách biến đổi và rút gọn thích hợp
\(a)\sqrt {{{25} \ đã vượt {81}}. {{16}\ đã vượt quá {49}}. {{196} \ trên 9}}\)
\(b)\sqrt {3{1 \ trên {16}}.2{{14} \ trên {25}}2{{34} \ trên {81}}}\ )
\(c){{\sqrt {640} .\sqrt {34.3} } \ vượt quá {\sqrt {567} }}\)
\(d)\sqrt {21.6} .\sqrt {810.} \sqrt {{{11}^2} – {5^2}}\)
NGƯỜI CHIẾN THẮNG
một)
\(\eqalign{ & \sqrt {{{25} \đã vượt {81}}. {{16} \đã vượt {49}}. {{196} \đã vượt 9}} \cr & = \sqrt {{{25} \vượt {81}}} .\sqrt {{{16} \vượt {49}}} .\sqrt {{{196} \ Trên 9}} \cr & = {5 \trên 9}.{4\trên 7}.{{14}\trên 3} = {{40}\trên{27}}\cr } \)
hai)
\(\eqalign{ & \sqrt {3{1 \trên {16}}.2{{14} \trên {25}}2{{34} \trên {81} }} \cr & = \sqrt {{{49} \vượt {16}}.{{64} \vượt {25}}.{{196} \vượt {81}}} \ cr & = \sqrt {{{49} \ trên {16}}} .\sqrt {{{64} \ trên {25}}} .\sqrt {{{196} \ trên { 81}}} \cr & = {7 \trên 4}.{8 \trên 5}.{{14}\trên 9} = {{196}\trên{45}}\cr } \)
c)
\(\eqalign{ & {{\sqrt {640} .\sqrt {34.3} } \over {\sqrt {567} }} \cr & = \ sqrt { {{640.34.3} \vượt {567}}} \cr & = \sqrt {{{64.49} \vượt {81}}} \cr & = {{\sqrt { 64} .\sqrt {49} } \over {\sqrt {81} }} = {{8.7} \over 9} = {{56} \over 9} \cr} \)
d)
\(\eqalign{ & \sqrt {21.6} .\sqrt {810.} \sqrt {{{11}^2} – {5^2}} \cr & ; = \sqrt {21,6.810.\left( {{{11}^2} – {5^2}} \right)} \cr & = \sqrt {216.81.\left( {11 + 5} \right)\left( {11 – 5} \right)} \cr & = \sqrt {{{36}^2}{{.9}^2}{{ .4 }^2}} = 36.9.4 = 1296 \cr} \)
Bài 71 Trang 40 SGK Toán 9 Tập 1
Rút gọn các biểu thức sau:
a) \(\left( {\sqrt 8 – 3.\sqrt 2 + \sqrt {10} } \right)\sqrt 2 – \sqrt 5 \)
b) \(0.2\sqrt {{{\left( { – 10} \right)}^2}.3} + 2\sqrt {{{\left( {) sqrt 3 – \sqrt 5 } \right)}^2}} \)
c) \(\left( {{1 \ trên 2}.\sqrt {{1 \ trên 2}} – {3 \ trên 2}.\sqrt 2 + {4 ) over 5}.\sqrt {200} } \right):{1 \over 8}\)
d) \(2\sqrt {{{\left( {\sqrt 2 – 3} \right)}^2}} + \sqrt {2.{{\left( { ) – 3} \right)}^2}} – 5\sqrt {{{\left( { – 1} \right)}^4}} \)
Hướng dẫn:
Một)
\(\eqalign{ & \left( {\sqrt 8 – 3.\sqrt 2 + \sqrt {10} } \right)\sqrt 2 – \sqrt 5 cr & = \sqrt {16} – 6 + \sqrt {20} – \sqrt 5 \cr & = 4 – 6 + 2\sqrt 5 – \sqrt 5 = – 2 + sqrt 5 \cr} \)
hai)
\(\eqalign{ & 0.2\sqrt {{{\left( { – 10} \right)}^2}.3} + 2\sqrt {{{\) left ( {\sqrt 3 – \sqrt 5 } \right)}^2}} \cr & = 0.2\left| { – 10} \right|\sqrt 3 + 2 left| {\sqrt 3 – \sqrt 5 } \right| \cr & = 0.2.10.\sqrt 3 + 2\left( {\sqrt 5 – \sqrt 3 } right) \cr & = 2\sqrt 3 + 2\sqrt 5 – 2\sqrt 3 = 2\sqrt 5 \cr} \)
Bởi vì \(- 10 < 0;\sqrt 3 < \sqrt 5 \leftrightarrow \sqrt 3 – \sqrt 5 < 0\)
c)
\(\eqalign{ & \left( {{1 \ trên 2}.\sqrt {{1 \ trên 2}} – {3 \ trên 2}.\sqrt 2 + {4 \trên 5}.\sqrt {200} } \right):{1 \trên 8} \cr & = \left( {{1 \trên 2}\sqrt { {2 \ trên {{2^2}}}} – {3 \ trên 2}\sqrt 2 + {4\ trên 5}\sqrt {{{10}^2}.2} } right):{1 \trên 8} \cr & = \left( {{1 \trên 4}\sqrt 2 – {3 \trên 2}\sqrt 2 + 8\sqrt 2 } \ phải):{1 \ trên 8} \cr & = {{27} \trên 4}\sqrt 2 .8 = 54\sqrt 2 \cr} \)
d)
\(\eqalign{ & 2\sqrt {{{\left( {\sqrt 2 – 3} \right)}^2}} + \sqrt {2.{{ left( { – 3} \right)}^2}} – 5\sqrt {{{\left( { – 1} \right)}^4}} \cr & = 2\ Trái | {\sqrt 2 – 3} \right| + \left| { – 3} \right|\sqrt 2 – 5\left| { – 1} \right| \cr & = 2\left( {3 – \sqrt 2 } \right) + 3\sqrt 2 – 5 \cr & = 6 – 2\sqrt 2 + 3\sqrt 2 – 5 = 1 + \sqrt 2 \cr} \)
bài 72 trang 40 SGK Toán 9 tập 1
nhà máy (đối với x, y, a, b và a ≥ b không âm)
a) \(xy – y\sqrt x + \sqrt x – 1\)
b) \(\sqrt {ax} – \sqrt {by} + \sqrt {bx} – \sqrt {ay} \)
c) \(\sqrt {a + b} + \sqrt {{a^2} – {b^2}} \)
d) \(12 – \sqrt x – x\)
Hướng dẫn:
một)
\(\eqalign{ & xy – y\sqrt x + \sqrt x – 1 \cr & = y\sqrt x \left( {\sqrt x – 1} right) + \left( {\sqrt x – 1} \right) \cr & = \left( {\sqrt x – 1} \right)\left( {y\ vuông x + 1} \ phải) \cr} \)
hai)
\(\eqalign{ & \sqrt {ax} – \sqrt {by} + \sqrt {bx} – \sqrt {ay} \cr & = \left( { \sqrt {ax} + \sqrt {bx} } \right) – \left( {\sqrt {ay} + \sqrt {by} } \right) \cr & = \ sqrt x \left( {\sqrt a + \sqrt b } \right) – \sqrt y \left( {\sqrt a + \sqrt b } \right) \cr & = \left( {\sqrt a + \sqrt b } \right)\left( {\sqrt x – \sqrt y } \right) \cr} \)
c)
\(\eqalign{ & \sqrt {a + b} + \sqrt {{a^2} – {b^2}} \cr & = \sqrt {a + b } + \sqrt {\left( {a + b} \right)\left( {a – b} \right)} \cr & = \sqrt {a + b} \left ( {1 + \sqrt {a – b} } \right) \cr} \)
d)
\(\eqalign{ & 12 – \sqrt x – x \cr & = 12 – 4\sqrt x + 3\sqrt x – x \cr & = 4\ Trái( {3 – \sqrt x } \right) + \sqrt x \left( {3 – \sqrt x } \right) \cr & = \left( {3 – \ sqrt x } \right)\left( {4 + \sqrt x } \right) \cr} \)
Bài 73 Trang 40 SGK Toán 9 Tập 1
Rút gọn và đánh giá các biểu thức sau:
a) \(\sqrt { – 9{\rm{a}}} – \sqrt {9 + 12{\rm{a}} + 4{{\rm{a}} ^2}}\) tại = – 9
b) \(1 + {{3m} \over {m – 2}}\sqrt {{m^2} – 4m + 4}\) tại m = 1,5
c) \(\sqrt {1 – 10{\rm{a}} + 25{{\rm{a}}^2}} – 4{\rm{a}}\ ) tại a = 2
d) \(4{\rm{x}} – \sqrt {9{{\rm{x}}^2} – 6{\rm{x}} + 1} \ ) tại x = 3
Hướng dẫn:
Một)
\(\eqalign{ & \sqrt { – 9{\rm{a}}} – \sqrt {9 + 12{\rm{a}} + 4{{\rm {a}}^2}} \cr & = \sqrt {{3^2}.\left( { – a} \right)} – \sqrt {{{\left( {3 + 2a} \right)}^2}} \cr & = 3\sqrt { – a} – \left| {3 + 2a} \right| \cr & = 3 sqrt 9 – \left| {3 + 2.\left( { – 9} \right)} \right| \cr & = 3.3 – 15 = – 6 \cr} \)
hai)
\(\eqalign{ & 1 + {{3m} \over {m – 2}}\sqrt {{m^2} – 4m + 4} \cr & = 1 + { {3m} \over {m – 2}}\sqrt {{{\left( {m – 2} \right)}^2}} \cr & = 1 + {{3m\left | {m – 2} \right|} \over {m – 2}} \cr} \)
\( = \left\{ \ma trận{ 1 + 3m\left( {với: m – 2 > 0} \right) \hfill \cr 1 – 3m\left ( {với: m – 2 < 0} \right) \hfill \cr} \right. = \left\{ \ma trận{ 1 + 3m\left( {với: m >; 2 } \right) \hfill \cr 1 – 3m\left( {với: m < 2} \right) \hfill \cr} \right.\)
m = 1,5 < 2. Vậy giá trị biểu thức tại m = 1,5 là 1 – 3m = 1 – 3,1,5 = -3,5
c)
\(\eqalign{ & \sqrt {1 – 10{\rm{a}} + 25{{\rm{a}}^2}} – 4{\rm{a }} \cr & {\rm{ = }}\sqrt {{{\left( {1 – 5{\rm{a}}} \right)}^2}} – 4{ \rm{a}} \cr & {\rm{ = }}\left| {1 – 5{\rm{a}}} \right| – 4{\rm{a} } \cr & = \left\{ \ma trận{ 1 – 5{\rm{a}} – 4{\rm{a}}\left( {với: 1 – 5{ rm{a}} \ge 0} \right) \hfill \cr 5{\rm{a}} – 1 – 4{\rm{a}}\left( {với: 1 – 5{\rm{a}} < 0} \right) \hfill \cr} \right \cr & = \left\{ \ma trận{ 1 – 9{ rm {a}}\left( {với – 5{\rm{a}} \ge – 1} \right) \hfill \cr a – 1\left( {với – 5{ rm{a}} {1 \ trên 5 }} right) \hfill \cr} \right \cr} \)
\(\sqrt 2 > {1 \ trên 5}\) . Vậy biểu thức tại a = √2 ước lượng thành a – 1 = 2 – 1
d)
\(\eqalign{ & 4{\rm{x}} – \sqrt {9{{\rm{x}}^2} – 6{\rm{x}} + 1} \cr & = 4{\rm{x}} – \sqrt {{{\left( {3{\rm{x}} + 1} \right)}^2}} \cr & = 4{\rm{x}} – \left| {3{\rm{x}} + 1} \right| \cr & = \left\{ matrix{ 4{\rm{x – }}\left( {3{\rm{x}} + 1} \right)\left( {với: 3{\rm{x}} + 1 \ge 0} \right) \hfill \cr 4{\rm{x}} + \left( {3{\rm{x}} + 1} \right)\ left( {với: 3{\rm{x}} + 1 < 0} \right) \hfill \cr} \right. \cr & = \left\{ \ma trận { 4{\rm{x}} – 3{\rm{x}} – 1\left( {với: 3{\rm{x}} \ge – 1} \right) \ hfill \cr 4{\rm{x}} + 3{\rm{x}} + 1\left( {với: 3{\rm{x}} < – 1} \right) hfill \cr} \right \cr & = \left\{ \ma trận{ x – 1\left( {v{\rm{new: x}} \ge – { 1 \ trên 3}} \ phải) \hfill \cr 7{\rm{x}} + 1\left( {với: x < – {1 \ trên 3}} \ phải ) hfill \cr} \right \cr} \)
Bởi vì \( – \sqrt 3 < – {1 \ trên 3}\) . Biểu thức tại x = -√3 có giá trị là 7.(-√3) + 1 = -7√3 + 1
giaibaitap.me