Bài 3 trang 7 sgk hình học 11

Video Bài 3 trang 7 sgk hình học 11

Trên mặt phẳng tọa độ Oxy, cho vectơ \(v = ( -1;2)\), hai điểm\(a(3;5)\), \(b ( – ) 1; 1)\) và đường thẳng d có phương trình \(x-2y+3=0\).

lg a

Tìm tọa độ điểm a’, b’ theo thứ tự ảnh a, b bằng phép dịch \(\overrightarrow{v}\)

Giải pháp thay thế:

Sử dụng biểu thức tọa độ của phép tịnh tiến: phép tịnh tiến véc tơ \(\overrightarrow v \left({a;b} \right)\) biến điểm m(x;y) thành điểm m'(x ‘;y’). Khi đó \(\overrightarrow {mm’} = \overrightarrow v \leftrightarrow \left\{ \matrix{x’ – x = a \hfill \cr y’ – y = b \hfill \cr} \right \leftrightarrow \left\{ \ma trận{x’ = x + a \hfill \cr y’ = y + b \hfill \ cr} \Có.\)

Giải thích chi tiết:

Giả sử \(a’=(x’; y’)\). sau đó

\(t_{\vec{v}} (a) = a’\) ⇔ \(\left\{\begin{ma trận} {x}’= 3 – 1 = 2\\ {y}’= 5 + 2 = 7 \end{matrix}\right.\) \(\rightarrow a’ = (2;7)\)

Xem Thêm: Giải Hóa 11 Bài 14: Bài thực hành 2: Tính chất của một số hợp chất

Tương tự, ta thấy rằng \(b’ =(-2;3)\)

lg b

Tìm tọa độ của điểm c bằng phép dịch \(\overrightarrow{v}\) sao cho a là hình của c

Giải pháp thay thế:

Sử dụng biểu thức tọa độ của phép tịnh tiến: phép tịnh tiến véc tơ \(\overrightarrow v \left({a;b} \right)\) biến điểm m(x;y) thành điểm m'(x ‘;y’). Khi đó \(\overrightarrow {mm’} = \overrightarrow v \leftrightarrow \left\{ \matrix{x’ – x = a \hfill \cr y’ – y = b \hfill \cr} \right \leftrightarrow \left\{ \ma trận{x’ = x + a \hfill \cr y’ = y + b \hfill \ cr} \Có.\)

Giải thích chi tiết:

Ta có \(a = t_{\vec{v}} (c)\) ⇔ \(c= t_{\vec{-v}} (a) \) (với ( – \overrightarrow v = \left( {1; – 2} \right)\))

\( \rightarrow \left\{ \ma trận{x’ = 3 + 1 = 4 \hfill \cr y’ = 5 – 2 = 3 \hfill \cr} \right. \rightarrow c\left( {4;3​​} \right)\)

lg c

Xem Thêm: 6 Bước vẽ cành hoa mai bằng bút chì đơn giản

Lấy phương trình của d’ bằng phép dịch \(\overrightarrow{v}\)

Giải pháp thay thế:

Sử dụng biểu thức tọa độ của phép tịnh tiến: phép tịnh tiến véc tơ \(\overrightarrow v \left({a;b} \right)\) biến điểm m(x;y) thành điểm m'(x ‘;y’). Khi đó \(\overrightarrow {mm’} = \overrightarrow v \leftrightarrow \left\{ \matrix{x’ – x = a \hfill \cr y’ – y = b \hfill \cr} \right \leftrightarrow \left\{ \ma trận{x’ = x + a \hfill \cr y’ = y + b \hfill \ cr} \Có.\)

Giải thích chi tiết:

Phương pháp 1, sử dụng biểu thức tọa độ tịnh tiến

Gọi \(m(x;y)\), \(m’ = t_{\vec{v}} = (x’; y’)\). sau đó

\( \rightarrow \left\{ \ma trận{x’ = x – 1 \hfill \cr y’ = y + 2 \hfill \cr} \right. \leftrightarrow \left\{ \ma trận{x = x’ + 1 \hfill \cr y = y’ – 2 \hfill \cr} \right.\)

Ta có \(m ∈ d ⇔ x-2y +3 = 0\)\( ⇔ (x’+1) – 2(y’-2)+3=0 ⇔ x’ -2y’ +8=0 \)

Xem Thêm: Hoàn thành bảng bình phương của các số tự nhiên … – Tailieumoi.vn

\(⇔ m’ ∈ d’\) có phương trình \(x-2y+8=0\).

Vậy \(t_{\vec{v}}(d) = d’:\,\, x-2y+8=0\)

Phương pháp 2. Sử dụng thuộc tính dịch

Gọi \(t_{\vec{v}}(d) = d’\).

Khi đó \(d’\) song song hoặc trùng với \(d\) nên dạng phương trình của nó là \(x-2y+c=0\) \( left ( {c \ne 3} \right)\).

Lấy một điểm trong \(d\), chẳng hạn như \(b(-1;1)\) và gọi \(b’ = {t_{\overrightarrow v }} left( b \ right) \rightarrow \left\{ \matrix{x’ = – 1 – 1 = – 2 \hfill \cr y’ = 1 + 2 = 3 \hfill cr} \right. \) \(\rightarrow b’\left( { – 2;3} \right) \in d’\)

\( \rightarrow – 2 – 2.3 + c = 0 \leftrightarrow c = 8\)

Vậy phương trình đường thẳng \(\left({d’} \right):\,\,x – 2y + 8 = 0\).

Kiểm tra tiếng Anh trực tuyến

Bạn đã biết trình độ tiếng Anh hiện tại của mình chưa?
Bắt đầu làm bài kiểm tra

Nhận tư vấn lộ trình từ ACET

Hãy để lại thông tin, tư vấn viên của ACET sẽ liên lạc với bạn trong thời gian sớm nhất.