Bài 5 trang 142 sgk toán 11

Video Bài 5 trang 142 sgk toán 11

Tính các giới hạn sau

lg a

\(\displaystyle\mathop {\lim }\limits_{x \to 2} {{x + 3} \ qua {{x^2} + x + 4}}\ )

Xem Thêm: Review Phim trường Santorini Park : Giá vé? Địa chỉ? Hợp phong cách gì?

Giải pháp thay thế:

Hàm được xác định tại \(2\) nên \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = f trái( 2 \phải)\)

Xem Thêm: High ticket closing là gì ?

Giải thích chi tiết:

\(\displaystyle \mathop {\lim }\limits_{x \to 2} {{x + 3} \over {{x^2} + x + 4}} = { {2 + 3} \vượt {{2^2} + 2 + 4}} = {1 \vượt 2}\)

lg b

\(\displaystyle\mathop {\lim }\limits_{x \to – 3} {{{x^2} + 5x + 6} \over {{x^2} + 3x}}\)

Xem Thêm: Review Phim trường Santorini Park : Giá vé? Địa chỉ? Hợp phong cách gì?

Giải pháp thay thế:

Tử số và mẫu số thành thừa số.

Xem Thêm: High ticket closing là gì ?

Giải thích chi tiết:

\(\eqalign{& \mathop {\lim }\limits_{x \to – 3} {{{x^2} + 5x + 6} \ qua {{x^ 2} + 3x}}\cr &= \mathop {\lim }\limits_{x \to – 3} {{(x + 2)(x + 3)} \over {x( x + 3)}} \cr&= \mathop {\lim }\limits_{x \to – 3} {{x + 2} \over x} \cr & = {{ – 3 + 2} \ trên {- 3}} = {1\ trên 3}\cr}\)

lg c

\(\displaystyle\mathop {\lim }\limits_{x \to {4^ – }} {{2x – 5} \over {x – 4}}\)

Xem Thêm: Review Phim trường Santorini Park : Giá vé? Địa chỉ? Hợp phong cách gì?

Giải pháp thay thế:

Tính toán dạng giới hạn \(\dfrac{l}{0}\)

Xem Thêm: High ticket closing là gì ?

Giải thích chi tiết:

\(\displaystyle\mathop {\lim }\limits_{x \to {4^ – }} {{2x – 5} \over {x – 4}}\)

Ta có: \(\mathop {\lim }\limits_{x \to {4^ – }} (2x – 5) =2.4-5= 3 > 0\)

Và \(\left\{ \matrix{x – 4 < 0,\forall x < 4 \hfill \cr \mathop {\lim }\limits_{x \to 4^-} (x – 4) = 0 \hfill \cr} \right.\)

\(\displaystyle\rightarrow \mathop {\lim }\limits_{x \to {4^ – }} {{2x – 5} \over {x – 4}} = – \infty \)

Xem Thêm: Giải SBT Vật lý 9: Bài 16-17. Định luật Jun – Len-xơ – Toploigiai

lgd

\(\mathop {\lim }\limits_{x \to + \infty } ( – {x^3} + {x^2} – 2x + 1)\)

Xem Thêm: Review Phim trường Santorini Park : Giá vé? Địa chỉ? Hợp phong cách gì?

Giải pháp thay thế:

Lấy \(x^3\) làm nhân tử chung.

Xem Thêm: High ticket closing là gì ?

Giải thích chi tiết:

\(\mathop {\lim }\limits_{x \to + \infty } ( – {x^3} + {x^2} – 2x + 1) \)

\(\displaystyle = \mathop {\lim }\limits_{x \to + \infty } {x^3}( – 1 + {1 \over x} – {2 \vượt {{x^2}}} + {1 \vượt {{x^3}}})\)

Vì \(\mathop {\lim }\limits_{x \to + \infty } {x^3} = + \infty \) và \(\mathop { lim }\limits_{x \to + \infty } \left( { – 1 + \dfrac{1}{x} – \dfrac{2}{{x^2}}} + dfrac{1}{{{x^3}}}} \right) = – 1 < 0\) nên

\(\mathop {\lim }\limits_{x \to + \infty } ( – {x^3} + {x^2} – 2x + 1) \)\ ( = – \infty \)

lg đ

\(\displaystyle\mathop {\lim }\limits_{x \to – \infty } {{x + 3} \trên {3x – 1}}\)

Xem Thêm: Review Phim trường Santorini Park : Giá vé? Địa chỉ? Hợp phong cách gì?

Giải pháp thay thế:

Chia cả tử số và mẫu số cho \(x\).

Xem Thêm: High ticket closing là gì ?

Giải thích chi tiết:

\(\eqalign{& \mathop {\lim }\limits_{x \to – \infty } {{x + 3} \over {3x – 1}} = mathop {\lim }\limits_{x \to – \infty } {{x(1 + {3 \over x})} \over {x(3 – {1 \over x} )}} \cr & = \mathop {\lim }\limits_{x \to – \infty } {{1 + {3 \over x}} \over {3 – {1 \over x}}} \cr & = \dfrac{{1 + \mathop {\lim }\limits_{x \to – \infty } \dfrac{3}{x} }}{{ – 3 – \mathop {\lim }\limits_{x \to – \infty } \dfrac{1}{x}}} \cr &= \dfrac{{ 1 + 0}}{{ – 3 – 0}}= {1 \trên 3} \cr} \)

lg f

\(\displaystyle \mathop {\lim }\limits_{x \to – \infty } {{\sqrt {{x^2} – 2x + 4} – x} nhiều hơn {3x – 1}}\)

Xem Thêm: Review Phim trường Santorini Park : Giá vé? Địa chỉ? Hợp phong cách gì?

Giải pháp thay thế:

Chia cả tử số và mẫu số cho \(x\).

Xem Thêm: High ticket closing là gì ?

Giải thích chi tiết:

\(\eqalign{& \mathop {\lim }\limits_{x \to – \infty } {{\sqrt {{x^2} – 2x + 4} – x} \over {3x – 1}} \cr&= \mathop {\lim }\limits_{x \to – \infty } {{|x|\sqrt {1 – {2 \over x} + {4 \over {{x^2}}}} – x} \over {3x – 1}} \cr &= \mathop {\lim }\limits_{ x \to – \infty } {{ – x\sqrt {1 – {2 \over x} + {4 \over {{x^2}}}} – x} \over {x( 3 – {1 \over x})}}\cr& = \mathop {\lim }\limits_{x \to – \infty } {{ – \sqrt {1 – {2 over x} + {4 \over {{x^2}}}} – 1} \over {3 – {1 \over x}}} \cr &= \dfrac{{ – sqrt {1 – 0 + 0} – 1}}{{3 – 0}}= {{ – 2} \ trên 3} \cr} \).

Khôi phục bài viết từ Wayback Machine

Kiểm tra tiếng Anh trực tuyến

Bạn đã biết trình độ tiếng Anh hiện tại của mình chưa?
Bắt đầu làm bài kiểm tra

Nhận tư vấn lộ trình từ ACET

Hãy để lại thông tin, tư vấn viên của ACET sẽ liên lạc với bạn trong thời gian sớm nhất.