Bài 5 trang 142 sgk toán 11

Video Bài 5 trang 142 sgk toán 11

Tính các giới hạn sau

lg a

\(\displaystyle\mathop {\lim }\limits_{x \to 2} {{x + 3} \ qua {{x^2} + x + 4}}\ )

Xem Thêm: Búp Bê Barbie Công Chúa Thần Tiên CFF24

Giải pháp thay thế:

Hàm được xác định tại \(2\) nên \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = f trái( 2 \phải)\)

Xem Thêm: Bài Thơ Tự Sự Của Lưu Quang Vũ – Phê Bình Văn Học

Giải thích chi tiết:

\(\displaystyle \mathop {\lim }\limits_{x \to 2} {{x + 3} \over {{x^2} + x + 4}} = { {2 + 3} \vượt {{2^2} + 2 + 4}} = {1 \vượt 2}\)

lg b

\(\displaystyle\mathop {\lim }\limits_{x \to – 3} {{{x^2} + 5x + 6} \over {{x^2} + 3x}}\)

Xem Thêm: Búp Bê Barbie Công Chúa Thần Tiên CFF24

Giải pháp thay thế:

Tử số và mẫu số thành thừa số.

Xem Thêm: Bài Thơ Tự Sự Của Lưu Quang Vũ – Phê Bình Văn Học

Giải thích chi tiết:

\(\eqalign{& \mathop {\lim }\limits_{x \to – 3} {{{x^2} + 5x + 6} \ qua {{x^ 2} + 3x}}\cr &= \mathop {\lim }\limits_{x \to – 3} {{(x + 2)(x + 3)} \over {x( x + 3)}} \cr&= \mathop {\lim }\limits_{x \to – 3} {{x + 2} \over x} \cr & = {{ – 3 + 2} \ trên {- 3}} = {1\ trên 3}\cr}\)

lg c

\(\displaystyle\mathop {\lim }\limits_{x \to {4^ – }} {{2x – 5} \over {x – 4}}\)

Xem Thêm: Búp Bê Barbie Công Chúa Thần Tiên CFF24

Giải pháp thay thế:

Tính toán dạng giới hạn \(\dfrac{l}{0}\)

Xem Thêm: Bài Thơ Tự Sự Của Lưu Quang Vũ – Phê Bình Văn Học

Giải thích chi tiết:

\(\displaystyle\mathop {\lim }\limits_{x \to {4^ – }} {{2x – 5} \over {x – 4}}\)

Ta có: \(\mathop {\lim }\limits_{x \to {4^ – }} (2x – 5) =2.4-5= 3 > 0\)

Và \(\left\{ \matrix{x – 4 < 0,\forall x < 4 \hfill \cr \mathop {\lim }\limits_{x \to 4^-} (x – 4) = 0 \hfill \cr} \right.\)

\(\displaystyle\rightarrow \mathop {\lim }\limits_{x \to {4^ – }} {{2x – 5} \over {x – 4}} = – \infty \)

Xem Thêm: Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau là tứ diện gì?

lgd

\(\mathop {\lim }\limits_{x \to + \infty } ( – {x^3} + {x^2} – 2x + 1)\)

Xem Thêm: Búp Bê Barbie Công Chúa Thần Tiên CFF24

Giải pháp thay thế:

Lấy \(x^3\) làm nhân tử chung.

Xem Thêm: Bài Thơ Tự Sự Của Lưu Quang Vũ – Phê Bình Văn Học

Giải thích chi tiết:

\(\mathop {\lim }\limits_{x \to + \infty } ( – {x^3} + {x^2} – 2x + 1) \)

\(\displaystyle = \mathop {\lim }\limits_{x \to + \infty } {x^3}( – 1 + {1 \over x} – {2 \vượt {{x^2}}} + {1 \vượt {{x^3}}})\)

Vì \(\mathop {\lim }\limits_{x \to + \infty } {x^3} = + \infty \) và \(\mathop { lim }\limits_{x \to + \infty } \left( { – 1 + \dfrac{1}{x} – \dfrac{2}{{x^2}}} + dfrac{1}{{{x^3}}}} \right) = – 1 < 0\) nên

\(\mathop {\lim }\limits_{x \to + \infty } ( – {x^3} + {x^2} – 2x + 1) \)\ ( = – \infty \)

lg đ

\(\displaystyle\mathop {\lim }\limits_{x \to – \infty } {{x + 3} \trên {3x – 1}}\)

Xem Thêm: Búp Bê Barbie Công Chúa Thần Tiên CFF24

Giải pháp thay thế:

Chia cả tử số và mẫu số cho \(x\).

Xem Thêm: Bài Thơ Tự Sự Của Lưu Quang Vũ – Phê Bình Văn Học

Giải thích chi tiết:

\(\eqalign{& \mathop {\lim }\limits_{x \to – \infty } {{x + 3} \over {3x – 1}} = mathop {\lim }\limits_{x \to – \infty } {{x(1 + {3 \over x})} \over {x(3 – {1 \over x} )}} \cr & = \mathop {\lim }\limits_{x \to – \infty } {{1 + {3 \over x}} \over {3 – {1 \over x}}} \cr & = \dfrac{{1 + \mathop {\lim }\limits_{x \to – \infty } \dfrac{3}{x} }}{{ – 3 – \mathop {\lim }\limits_{x \to – \infty } \dfrac{1}{x}}} \cr &= \dfrac{{ 1 + 0}}{{ – 3 – 0}}= {1 \trên 3} \cr} \)

lg f

\(\displaystyle \mathop {\lim }\limits_{x \to – \infty } {{\sqrt {{x^2} – 2x + 4} – x} nhiều hơn {3x – 1}}\)

Xem Thêm: Búp Bê Barbie Công Chúa Thần Tiên CFF24

Giải pháp thay thế:

Chia cả tử số và mẫu số cho \(x\).

Xem Thêm: Bài Thơ Tự Sự Của Lưu Quang Vũ – Phê Bình Văn Học

Giải thích chi tiết:

\(\eqalign{& \mathop {\lim }\limits_{x \to – \infty } {{\sqrt {{x^2} – 2x + 4} – x} \over {3x – 1}} \cr&= \mathop {\lim }\limits_{x \to – \infty } {{|x|\sqrt {1 – {2 \over x} + {4 \over {{x^2}}}} – x} \over {3x – 1}} \cr &= \mathop {\lim }\limits_{ x \to – \infty } {{ – x\sqrt {1 – {2 \over x} + {4 \over {{x^2}}}} – x} \over {x( 3 – {1 \over x})}}\cr& = \mathop {\lim }\limits_{x \to – \infty } {{ – \sqrt {1 – {2 over x} + {4 \over {{x^2}}}} – 1} \over {3 – {1 \over x}}} \cr &= \dfrac{{ – sqrt {1 – 0 + 0} – 1}}{{3 – 0}}= {{ – 2} \ trên 3} \cr} \).

Kiểm tra tiếng Anh trực tuyến

Bạn đã biết trình độ tiếng Anh hiện tại của mình chưa?
Bắt đầu làm bài kiểm tra

Nhận tư vấn lộ trình từ ACET

Hãy để lại thông tin, tư vấn viên của ACET sẽ liên lạc với bạn trong thời gian sớm nhất.