Bài 5 trang 142 sgk toán 11

Video Bài 5 trang 142 sgk toán 11

Tính các giới hạn sau

lg a

\(\displaystyle\mathop {\lim }\limits_{x \to 2} {{x + 3} \ qua {{x^2} + x + 4}}\ )

Xem Thêm:  Hướng dẫn tải app 6686 Online Cho Android và iOS chi tiết nhất

Giải pháp thay thế:

Hàm được xác định tại \(2\) nên \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = f trái( 2 \phải)\)

Xem Thêm: Tập làm văn lớp 5: Tả cảnh dòng sông Hồng 2 Dàn ý & 18 bài văn tả cảnh sông nước lớp 5

Giải thích chi tiết:

\(\displaystyle \mathop {\lim }\limits_{x \to 2} {{x + 3} \over {{x^2} + x + 4}} = { {2 + 3} \vượt {{2^2} + 2 + 4}} = {1 \vượt 2}\)

lg b

\(\displaystyle\mathop {\lim }\limits_{x \to – 3} {{{x^2} + 5x + 6} \over {{x^2} + 3x}}\)

Xem Thêm:  Hướng dẫn tải app 6686 Online Cho Android và iOS chi tiết nhất

Giải pháp thay thế:

Tử số và mẫu số thành thừa số.

Xem Thêm: Tập làm văn lớp 5: Tả cảnh dòng sông Hồng 2 Dàn ý & 18 bài văn tả cảnh sông nước lớp 5

Giải thích chi tiết:

\(\eqalign{& \mathop {\lim }\limits_{x \to – 3} {{{x^2} + 5x + 6} \ qua {{x^ 2} + 3x}}\cr &= \mathop {\lim }\limits_{x \to – 3} {{(x + 2)(x + 3)} \over {x( x + 3)}} \cr&= \mathop {\lim }\limits_{x \to – 3} {{x + 2} \over x} \cr & = {{ – 3 + 2} \ trên {- 3}} = {1\ trên 3}\cr}\)

lg c

\(\displaystyle\mathop {\lim }\limits_{x \to {4^ – }} {{2x – 5} \over {x – 4}}\)

Xem Thêm:  Hướng dẫn tải app 6686 Online Cho Android và iOS chi tiết nhất

Giải pháp thay thế:

Tính toán dạng giới hạn \(\dfrac{l}{0}\)

Xem Thêm: Tập làm văn lớp 5: Tả cảnh dòng sông Hồng 2 Dàn ý & 18 bài văn tả cảnh sông nước lớp 5

Giải thích chi tiết:

\(\displaystyle\mathop {\lim }\limits_{x \to {4^ – }} {{2x – 5} \over {x – 4}}\)

Ta có: \(\mathop {\lim }\limits_{x \to {4^ – }} (2x – 5) =2.4-5= 3 > 0\)

Và \(\left\{ \matrix{x – 4 < 0,\forall x < 4 \hfill \cr \mathop {\lim }\limits_{x \to 4^-} (x – 4) = 0 \hfill \cr} \right.\)

\(\displaystyle\rightarrow \mathop {\lim }\limits_{x \to {4^ – }} {{2x – 5} \over {x – 4}} = – \infty \)

Xem Thêm: Hình xăm cá heo và ý nghĩa của nó

lgd

\(\mathop {\lim }\limits_{x \to + \infty } ( – {x^3} + {x^2} – 2x + 1)\)

Xem Thêm:  Hướng dẫn tải app 6686 Online Cho Android và iOS chi tiết nhất

Giải pháp thay thế:

Lấy \(x^3\) làm nhân tử chung.

Xem Thêm: Tập làm văn lớp 5: Tả cảnh dòng sông Hồng 2 Dàn ý & 18 bài văn tả cảnh sông nước lớp 5

Giải thích chi tiết:

\(\mathop {\lim }\limits_{x \to + \infty } ( – {x^3} + {x^2} – 2x + 1) \)

\(\displaystyle = \mathop {\lim }\limits_{x \to + \infty } {x^3}( – 1 + {1 \over x} – {2 \vượt {{x^2}}} + {1 \vượt {{x^3}}})\)

Vì \(\mathop {\lim }\limits_{x \to + \infty } {x^3} = + \infty \) và \(\mathop { lim }\limits_{x \to + \infty } \left( { – 1 + \dfrac{1}{x} – \dfrac{2}{{x^2}}} + dfrac{1}{{{x^3}}}} \right) = – 1 < 0\) nên

\(\mathop {\lim }\limits_{x \to + \infty } ( – {x^3} + {x^2} – 2x + 1) \)\ ( = – \infty \)

lg đ

\(\displaystyle\mathop {\lim }\limits_{x \to – \infty } {{x + 3} \trên {3x – 1}}\)

Xem Thêm:  Hướng dẫn tải app 6686 Online Cho Android và iOS chi tiết nhất

Giải pháp thay thế:

Chia cả tử số và mẫu số cho \(x\).

Xem Thêm: Tập làm văn lớp 5: Tả cảnh dòng sông Hồng 2 Dàn ý & 18 bài văn tả cảnh sông nước lớp 5

Giải thích chi tiết:

\(\eqalign{& \mathop {\lim }\limits_{x \to – \infty } {{x + 3} \over {3x – 1}} = mathop {\lim }\limits_{x \to – \infty } {{x(1 + {3 \over x})} \over {x(3 – {1 \over x} )}} \cr & = \mathop {\lim }\limits_{x \to – \infty } {{1 + {3 \over x}} \over {3 – {1 \over x}}} \cr & = \dfrac{{1 + \mathop {\lim }\limits_{x \to – \infty } \dfrac{3}{x} }}{{ – 3 – \mathop {\lim }\limits_{x \to – \infty } \dfrac{1}{x}}} \cr &= \dfrac{{ 1 + 0}}{{ – 3 – 0}}= {1 \trên 3} \cr} \)

lg f

\(\displaystyle \mathop {\lim }\limits_{x \to – \infty } {{\sqrt {{x^2} – 2x + 4} – x} nhiều hơn {3x – 1}}\)

Xem Thêm:  Hướng dẫn tải app 6686 Online Cho Android và iOS chi tiết nhất

Giải pháp thay thế:

Chia cả tử số và mẫu số cho \(x\).

Xem Thêm: Tập làm văn lớp 5: Tả cảnh dòng sông Hồng 2 Dàn ý & 18 bài văn tả cảnh sông nước lớp 5

Giải thích chi tiết:

\(\eqalign{& \mathop {\lim }\limits_{x \to – \infty } {{\sqrt {{x^2} – 2x + 4} – x} \over {3x – 1}} \cr&= \mathop {\lim }\limits_{x \to – \infty } {{|x|\sqrt {1 – {2 \over x} + {4 \over {{x^2}}}} – x} \over {3x – 1}} \cr &= \mathop {\lim }\limits_{ x \to – \infty } {{ – x\sqrt {1 – {2 \over x} + {4 \over {{x^2}}}} – x} \over {x( 3 – {1 \over x})}}\cr& = \mathop {\lim }\limits_{x \to – \infty } {{ – \sqrt {1 – {2 over x} + {4 \over {{x^2}}}} – 1} \over {3 – {1 \over x}}} \cr &= \dfrac{{ – sqrt {1 – 0 + 0} – 1}}{{3 – 0}}= {{ – 2} \ trên 3} \cr} \).

Kiểm tra tiếng Anh trực tuyến

Bạn đã biết trình độ tiếng Anh hiện tại của mình chưa?
Bắt đầu làm bài kiểm tra

Nhận tư vấn lộ trình từ ACET

Hãy để lại thông tin, tư vấn viên của ACET sẽ liên lạc với bạn trong thời gian sớm nhất.