Bài 5 trang 142 sgk toán 11

Video Bài 5 trang 142 sgk toán 11

Tính các giới hạn sau

lg a

\(\displaystyle\mathop {\lim }\limits_{x \to 2} {{x + 3} \ qua {{x^2} + x + 4}}\ )

Xem Thêm: TẢI Bản đồ các tỉnh miền Bắc khổ lớn Mới nhất 2022

Giải pháp thay thế:

Hàm được xác định tại \(2\) nên \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = f trái( 2 \phải)\)

Xem Thêm: Chiến thuật kinh điển của Tam Quốc Diễn Nghĩa tái hiện trong sử Việt

Giải thích chi tiết:

\(\displaystyle \mathop {\lim }\limits_{x \to 2} {{x + 3} \over {{x^2} + x + 4}} = { {2 + 3} \vượt {{2^2} + 2 + 4}} = {1 \vượt 2}\)

lg b

\(\displaystyle\mathop {\lim }\limits_{x \to – 3} {{{x^2} + 5x + 6} \over {{x^2} + 3x}}\)

Xem Thêm: TẢI Bản đồ các tỉnh miền Bắc khổ lớn Mới nhất 2022

Giải pháp thay thế:

Tử số và mẫu số thành thừa số.

Xem Thêm: Chiến thuật kinh điển của Tam Quốc Diễn Nghĩa tái hiện trong sử Việt

Giải thích chi tiết:

\(\eqalign{& \mathop {\lim }\limits_{x \to – 3} {{{x^2} + 5x + 6} \ qua {{x^ 2} + 3x}}\cr &= \mathop {\lim }\limits_{x \to – 3} {{(x + 2)(x + 3)} \over {x( x + 3)}} \cr&= \mathop {\lim }\limits_{x \to – 3} {{x + 2} \over x} \cr & = {{ – 3 + 2} \ trên {- 3}} = {1\ trên 3}\cr}\)

lg c

\(\displaystyle\mathop {\lim }\limits_{x \to {4^ – }} {{2x – 5} \over {x – 4}}\)

Xem Thêm: TẢI Bản đồ các tỉnh miền Bắc khổ lớn Mới nhất 2022

Giải pháp thay thế:

Tính toán dạng giới hạn \(\dfrac{l}{0}\)

Xem Thêm: Chiến thuật kinh điển của Tam Quốc Diễn Nghĩa tái hiện trong sử Việt

Giải thích chi tiết:

\(\displaystyle\mathop {\lim }\limits_{x \to {4^ – }} {{2x – 5} \over {x – 4}}\)

Ta có: \(\mathop {\lim }\limits_{x \to {4^ – }} (2x – 5) =2.4-5= 3 > 0\)

Và \(\left\{ \matrix{x – 4 < 0,\forall x < 4 \hfill \cr \mathop {\lim }\limits_{x \to 4^-} (x – 4) = 0 \hfill \cr} \right.\)

\(\displaystyle\rightarrow \mathop {\lim }\limits_{x \to {4^ – }} {{2x – 5} \over {x – 4}} = – \infty \)

Xem Thêm: Bài hát tiếng Trung: Cô gái ấy nói với tôi 那女孩对我说 Nà nǚhái duì wǒ shuō

lgd

\(\mathop {\lim }\limits_{x \to + \infty } ( – {x^3} + {x^2} – 2x + 1)\)

Xem Thêm: TẢI Bản đồ các tỉnh miền Bắc khổ lớn Mới nhất 2022

Giải pháp thay thế:

Lấy \(x^3\) làm nhân tử chung.

Xem Thêm: Chiến thuật kinh điển của Tam Quốc Diễn Nghĩa tái hiện trong sử Việt

Giải thích chi tiết:

\(\mathop {\lim }\limits_{x \to + \infty } ( – {x^3} + {x^2} – 2x + 1) \)

\(\displaystyle = \mathop {\lim }\limits_{x \to + \infty } {x^3}( – 1 + {1 \over x} – {2 \vượt {{x^2}}} + {1 \vượt {{x^3}}})\)

Vì \(\mathop {\lim }\limits_{x \to + \infty } {x^3} = + \infty \) và \(\mathop { lim }\limits_{x \to + \infty } \left( { – 1 + \dfrac{1}{x} – \dfrac{2}{{x^2}}} + dfrac{1}{{{x^3}}}} \right) = – 1 < 0\) nên

\(\mathop {\lim }\limits_{x \to + \infty } ( – {x^3} + {x^2} – 2x + 1) \)\ ( = – \infty \)

lg đ

\(\displaystyle\mathop {\lim }\limits_{x \to – \infty } {{x + 3} \trên {3x – 1}}\)

Xem Thêm: TẢI Bản đồ các tỉnh miền Bắc khổ lớn Mới nhất 2022

Giải pháp thay thế:

Chia cả tử số và mẫu số cho \(x\).

Xem Thêm: Chiến thuật kinh điển của Tam Quốc Diễn Nghĩa tái hiện trong sử Việt

Giải thích chi tiết:

\(\eqalign{& \mathop {\lim }\limits_{x \to – \infty } {{x + 3} \over {3x – 1}} = mathop {\lim }\limits_{x \to – \infty } {{x(1 + {3 \over x})} \over {x(3 – {1 \over x} )}} \cr & = \mathop {\lim }\limits_{x \to – \infty } {{1 + {3 \over x}} \over {3 – {1 \over x}}} \cr & = \dfrac{{1 + \mathop {\lim }\limits_{x \to – \infty } \dfrac{3}{x} }}{{ – 3 – \mathop {\lim }\limits_{x \to – \infty } \dfrac{1}{x}}} \cr &= \dfrac{{ 1 + 0}}{{ – 3 – 0}}= {1 \trên 3} \cr} \)

lg f

\(\displaystyle \mathop {\lim }\limits_{x \to – \infty } {{\sqrt {{x^2} – 2x + 4} – x} nhiều hơn {3x – 1}}\)

Xem Thêm: TẢI Bản đồ các tỉnh miền Bắc khổ lớn Mới nhất 2022

Giải pháp thay thế:

Chia cả tử số và mẫu số cho \(x\).

Xem Thêm: Chiến thuật kinh điển của Tam Quốc Diễn Nghĩa tái hiện trong sử Việt

Giải thích chi tiết:

\(\eqalign{& \mathop {\lim }\limits_{x \to – \infty } {{\sqrt {{x^2} – 2x + 4} – x} \over {3x – 1}} \cr&= \mathop {\lim }\limits_{x \to – \infty } {{|x|\sqrt {1 – {2 \over x} + {4 \over {{x^2}}}} – x} \over {3x – 1}} \cr &= \mathop {\lim }\limits_{ x \to – \infty } {{ – x\sqrt {1 – {2 \over x} + {4 \over {{x^2}}}} – x} \over {x( 3 – {1 \over x})}}\cr& = \mathop {\lim }\limits_{x \to – \infty } {{ – \sqrt {1 – {2 over x} + {4 \over {{x^2}}}} – 1} \over {3 – {1 \over x}}} \cr &= \dfrac{{ – sqrt {1 – 0 + 0} – 1}}{{3 – 0}}= {{ – 2} \ trên 3} \cr} \).

Kiểm tra tiếng Anh trực tuyến

Bạn đã biết trình độ tiếng Anh hiện tại của mình chưa?
Bắt đầu làm bài kiểm tra

Nhận tư vấn lộ trình từ ACET

Hãy để lại thông tin, tư vấn viên của ACET sẽ liên lạc với bạn trong thời gian sớm nhất.